
Рад са датотекама

5.1. Основни задаци за писање и читање из датотеке

Задатак: Учешљавање студената два тока

Сви студенти прве године факултета распоређени су у два тока, а њихови подаци
смештени су у две текстуалне датотеке. У свакоj датотеци налази се листа студената
сортирана лексикографски по презимену, а затим по имену. Написати програм коjи
спаjа ове две листе учешљавањем у jедну jединствену сортирану листу и резултат
уписуjе у нову датотеку.

Опис улаза

Са стандардног улаза задаjе се прво назив датотеке коjа садржи листу студената
првог тока и броj студената на том току, затим назив датотеке и броj студената на
другом току. Подаци о сваком студенту дати су у новом реду, где сваки ред садржи
редом презиме, име и броj индекса, раздвоjене размаком. Листе у оба фаjла су већ
сортиране лексикографски по презимену, а затим по имену.

Опис излаза

Као резултат извршавања програма датотека са називом studentiLista.txt садржи
jединствену, лексикографски сортирану листу свих студената из оба фаjла. У случаjу
грешке током извршавања програма на стандардни излаз исписати -1 и прекинути
програм.

Пример

Улаз

prviTok.txt 3
drugiTok.txt 4

Садржаj датотеке prviTok.txt

Ilic Stefan 12/2025
Petrovic Nikola 20/2025
Zoric Milica 4/2025

1

Садржаj датотеке drugiTok.txt

Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Stankovic Ivana 9/2025
Tomic Milica 17/2025

Излаз, садржаj датотеке studentiLista.txt

Ilic Stefan 12/2025
Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Petrovic Nikola 20/2025
Stankovic Ivana 9/2025
Tomic Milica 17/2025
Zoric Milica 4/2025

Решење

Како су обе листе већ сортиране у траженом поретку, да бисмо одредили првог
студента нове листе довољно jе да упоредимо прва два студента са оба тока. Водећи
се истим принципом, даље можемо да упоређуjемо редом по jедног студента са оба
тока, при чему прелазимо на наредног само у оноj датотеци из коjе смо преписали
податак. Када дођемо до краjа било коjе од две листе, потребно jе само преписати
редом преостале податке из друге листе.

Податке о jедном студенту можемо представити коришћењем структуре, а поређење
два студента можемо имплементирати дефинисањем помоћне функциjе. Учитавање
комплетног садржаjа две датотеке у колекциjе типа vector<Student> можемо прескочити
ради уштеде мемориjе.

#include <iostream >

#include <fstream >

#include <string >

using namespace std;

struct Student {

string prezime;

string ime;

string indeks;

};

bool manji_ili_jednak(Student s1, Student s2) {

if (s1.prezime < s2.prezime) return true;

2

if (s1.prezime > s2.prezime) return false;

if (s1.ime < s2.ime) return true;

if (s1.ime > s2.ime) return false;

return s1.indeks <= s2.indeks;

}

int main() {

string fajl1 , fajl2;

int n, m;

cin >> fajl1 >> n;

cin >> fajl2 >> m;

ifstream tok1(fajl1);

ifstream tok2(fajl2);

ofstream tok3("studentiLista.txt");

if (!tok1.is_open () || !tok2.is_open ()) {

cout << "-1’" << endl;

return 0;

}

Student s1, s2;

int i = 0, j = 0;

tok1 >> s1.prezime >> s1.ime >> s1.indeks;

tok2 >> s2.prezime >> s2.ime >> s2.indeks;

while (i < n && j < m) {

if (manji_ili_jednak(s1, s2)) {

tok3 << s1.prezime << "␣" << s1.ime << "␣" << s1.indeks << endl;

i++;

if (i < n)

tok1 >> s1.prezime >> s1.ime >> s1.indeks;

} else {

tok3 << s2.prezime << "␣" << s2.ime << "␣" << s2.indeks << endl;

j++;

if (j < m)

tok2 >> s2.prezime >> s2.ime >> s2.indeks;

}

3

}

while (i < n) {

tok3 << s1.prezime << "␣" << s1.ime << "␣" << s1.indeks << endl;

i++;

if (i < n)

tok1 >> s1.prezime >> s1.ime >> s1.indeks;

}

while (j < m) {

tok3 << s2.prezime << "␣" << s2.ime << "␣" << s2.indeks << endl;

j++;

if (j < m)

tok2 >> s2.prezime >> s2.ime >> s2.indeks;

}

return 0;

}

Задатак: Подела студената на токове

Познат jе списак студената коjи су уписали jедан предмет. Потребно jе разврстати
их у два тока, тако да студенти са парним броjем индекса буду распоређени у први
ток, а са непарним у други. Студенти у оквиру jедног тока треба да буду сортирани
лексикографски по презимену, а затим по имену.

Опис улаза

Са стандардног улаза учитава се назив датотеке коjа садржи листу студената
коjи су уписали предмет. Подаци о сваком студенту дати су у новом реду, где сваки
ред садржи редом презиме, име и броj индекса, раздвоjене размаком. Студенти у
улазном фаjлу су већ сортирани лексикографски по презимену, а затим по имену.

Опис излаза

Као резултат извршавања програма датотека са називом prviTok.txt садржи
лексикографски сортирану листу свих студената коjи припадаjу првом току, а датотека
drugiTok.txt сортирану листу студената другог тока. У случаjу грешке током извршавања
програма исписати -1 и прекинути програм.

Пример

Улаз

4

studentiLista.txt

Садржаj датотеке studentiLista.txt

Ilic Stefan 12/2025
Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Petrovic Nikola 20/2025
Stankovic Ivana 9/2025
Tomic Milica 17/2025
Zoric Milica 4/2025

Излаз, садржаj датотеке prviTok.txt

Ilic Stefan 12/2025
Petrovic Nikola 20/2025
Zoric Milica 4/2025

Излаз, садржаj датотеке drugiTok.txt

Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Stankovic Ivana 9/2025
Tomic Milica 17/2025

Решење

Како jе листа свих студената већ сортирана, нема потребе додатно вршити сортирање
студената по токовима, већ jе довољно jедном проћи кроз листу и, уколико jе броj
индекса тренутног студента дељив са два, додати га у датотеку коjа садржи студенте
првог тока. Иначе, потребно jе додати га у датотеку у коjоj се налазе студенти другог
тока.

Пошто броj студената ниjе унапред познат, морамо обрађивати датотеку линиjу
по линиjу све док у њоj има неког садржаjа. Учитавање jедне линиjе из датотеке
може се остварити већ поменутом функциjом getline.

Податке о jедном студенту можемо поново представити коришћењем структуре,
при чему уместо поља indeks можемо имати два нова поља коjа ће редом чувати
броj индекса и годину уписа (ради лакше провере да ли jе броj индекса дељив са
два).

#include <iostream >

#include <fstream >

#include <string >

#include <sstream >

5

using namespace std;

struct Student {

string prezime;

string ime;

int brojIndeksa;

int godinaUpisa;

};

int main(){

string fajl;

cin >> fajl;

ifstream studenti(fajl);

string prviTok = "prviTok.txt", drugiTok = "drugiTok.txt";

ofstream tok1(prviTok);

ofstream tok2(drugiTok);

if(! studenti.is_open ()){

cout << -1 << endl;

return 0;

}

Student s;

string linija;

while(getline(studenti , linija)){

char crtica;

stringstream student(linija);

student >> s.prezime >> s.ime >> s.brojIndeksa >>

crtica >> s.godinaUpisa;

if(s.brojIndeksa % 2){

tok2 << s.prezime << "␣" << s.ime << "␣"

<< s.brojIndeksa << "/" <<

s.godinaUpisa << "\n";

}else{

tok1 << s.prezime << "␣" << s.ime << "␣"

<< s.brojIndeksa << "/" <<

s.godinaUpisa << "\n";

}

6

}

return 0;

}

}

Задатак: Распоређивање студената у групе

Познат jе списак студената коjи су уписали jедан предмет. Потребно jе разврстати
их у n група, тако да се студенти чиjи броjеви индекса даjу исти остатак при дељењу
са n нађу у истоj групи. Студенти у оквиру jедне групе треба да буду сортирани
лексикографски по презимену, а затим по имену.

Опис улаза

Са стандардног улаза учитава се назив датотеке коjа садржи листу студената
коjи су уписали предмет и броj група n. Подаци о сваком студенту дати су у новом
реду, где сваки ред садржи редом презиме, име и броj индекса, раздвоjене размаком.
Листа студената у улазном фаjлу jе већ сортирана лексикографски по презимену, а
затим по имену.

Опис излаза

Као резултат извршавања програма датотека са називом studentiGrupa_i.txt
садржи лексикографски сортирану листу свих студената коjи припадаjу групи i
(где jе i остатак пре дељењу њиховог броjа индекса са n). У случаjу грешке током
извршавања програма на стандардни излаз исписати -1 и прекинути програм.

Пример

Улаз

UP.txt 3

Садржаj датотеке UP.txt

Ilic Stefan 12/2025
Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Petrovic Nikola 20/2025
Stankovic Ivana 9/2025

7

Tomic Milica 17/2025
Zoric Milica 4/2025

Излаз, садржаj датотеке studentiGrupa_0.txt

Ilic Stefan 12/2025
Stankovic Ivana 9/2025

Излаз, садржаj датотеке studentiGrupa_1.txt

Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Zoric Milica 4/2025

Излаз, садржаj датотеке studentiGrupa_2.txt

Petrovic Nikola 20/2025
Tomic Milica 17/2025

Решење

Jедно могуће решење подразумевало би да за сваки од могућих остатака i при
дељењу броjем n прођемо кроз целу листу студената и издвоjимо у фаjл studentiGrupa_i.txt
оне за коjе jе остатак при дељењу њиховог броjа индекса са n баш i.

#include <iostream >

#include <fstream >

#include <sstream >

using namespace std;

struct Student {

string prezime;

string ime;

int brojIndeksa;

int godinaUpisa;

};

int main(){

string fajl;

int n;

cin >> fajl >> n;

Student s;

string linija;

8

for(int i = 0; i < n; i++){

ifstream studenti(fajl);

if(! studenti.is_open ()){

cout << -1 << endl;

return 0;

}

ofstream grupa("studentiGrupa_" + to_string(i) +

".txt");

while(getline(studenti , linija)){

char crtica;

stringstream student(linija);

student >> s.prezime >> s.ime >>

s.brojIndeksa >> crtica >>

s.godinaUpisa;

if(s.brojIndeksa % n == i){

grupa << s.prezime << "␣" << s.ime

<< "␣" << s.brojIndeksa << "/"

<< s.godinaUpisa << "\n";

}

}

}

return 0;

}

Друго могуће решење jе да наjпре направимо низ у коме ћемо чувати излазне
токове (ofstream) за сваки од фаjлова studentiGrupa_i.txt. На таj начин, не морамо
више пута да пролазимо кроз листу студената, већ у jедном пролазу можемо да
разврстамо студенте уписуjући их у одговараjући фаjл.

#include <iostream >

#include <fstream >

#include <sstream >

#include <vector >

using namespace std;

struct Student {

9

string prezime;

string ime;

int brojIndeksa;

int godinaUpisa;

};

int main(){

string fajl;

int n;

cin >> fajl >> n;

vector <ofstream > grupe(n);

for(int i = 0; i < n; i++)

grupe[i] = ofstream("studentiGrupa_" +

to_string(i) + ".txt");

Student s;

string linija;

ifstream studenti(fajl);

if(! studenti.is_open ()){

cout << -1 << endl;

return 0;

}

while(getline(studenti , linija)){

char crtica;

stringstream student(linija);

student >> s.prezime >> s.ime >> s.brojIndeksa >>

crtica >> s.godinaUpisa;

int ostatak = s.brojIndeksa % n;

grupe[ostatak] << s.prezime << "␣" << s.ime << "␣"

<< s.brojIndeksa << "/" << s.godinaUpisa <<

"\n";

}

10

return 0;

}

Задатак: Аутоматски прегледач испита

Сваки студент на испиту креира директориjум са своjим именом, у ком се налазе
датотеке са задацима. За сваки од 5 задатака постоjи тачно по jедна датотека,
именована броjем задатка, са екстензиjом .cpp. Радови свих студената се у овом
формату прослеђуjу аутоматском прегледачу на оцењивање.

Резултат прегледача jе jедна CSV датотека коjа садржи по jедан ред за сваки
задатак свих студената и броj тестова коjе такво решење пролази, а вредности су
раздвоjене размаком.

Написати програм коjи форматира улазну CSV датотеку, односно групише резултате
по студентима, тако да нова CSV датотека садржи по jедан ред за сваког студента.
Поени за jедан задатак jеднаки су броjу тестова коjи пролазе, али само уколико то
решење пролази све елеиминационе тестове. У супротном, броj поена jе 0, без обзира
на броj тестова.

Опис улаза

Улазна датотека под називом rezultati.csv садржи редове у следећем формату:

/home/januar1/radovi/UP_Ime_Prezime_indeks 1.cpp 1 8

Прва колона представља име директориjума студента, затим следи име датотеке
са решењем задатка, а након тога ознака (0 или 1) да ли задатак пролази све
елиминационе тестове и на краjу укупан броj тестова коjи пролазе. За сваког студента
улазна датотека садржи тачно 5 редова, по jедан за сваки задатак. Редови за различите
студенте се налазе jедан за другим и листа не мора бити сортирана.

Опис излаза

Излазна CSV датотека садржи форматиране податке, по jедан ред за сваког студента,
прво име директориjума, након чега следе његови поени, редом по задацима.

Пример

Улаз, садржаj датотеке rezultati.csv

/home/januar1/radovi/UP_Nikola_Petrovic_119 1.cpp 1 9
/home/januar1/radovi/UP_Ana_Pavlovic_110 1.cpp 1 10
/home/januar1/radovi/UP_Nikola_Petrovic_119 2.cpp 0 5
/home/januar1/radovi/UP_Ana_Pavlovic_110 2.cpp 1 9
/home/januar1/radovi/UP_Nikola_Petrovic_119 3.cpp 1 8

11

/home/januar1/radovi/UP_Ana_Pavlovic_110 3.cpp 0 5
/home/januar1/radovi/UP_Nikola_Petrovic_119 4.cpp 1 10
/home/januar1/radovi/UP_Ana_Pavlovic_110 4.cpp 1 8
/home/januar1/radovi/UP_Nikola_Petrovic_119 5.cpp 0 3
/home/januar1/radovi/UP_Ana_Pavlovic_110 5.cpp 1 7

Излаз, садржаj датотеке formatirano.csv

/home/januar1/radovi/UP_Ana_Pavlovic_110 10 9 0 8 7
/home/januar1/radovi/UP_Nikola_Petrovic_119 9 0 8 10 0

Решење

Оваj проблем можемо решити сортирањем редова улазне датотеке, прво по имену
директориjума, а затим по имену датотеке решења. На оваj начин, свих 5 редова коjи
одговараjу jедном студенту биће узастопни и то баш у одговараjућем редоследу по
задацима. У те сврхе можемо учитати све податке у jедну колекциjу, а за представљање
jедног реда можемо дефинисати структуру. Резултате уређене на оваj начин можемо
jедноставно преписати у излазну датотеку, при чему за броj поена треба да водимо
рачуна и о елиминационим тестовима.

#include <iostream >

#include <fstream >

#include <string >

#include <sstream >

#include <vector >

#include <algorithm >

using namespace std;

struct Rezultat {

string direktorijum;

string zadatak;

int eliminacioni;

int testovi;

bool operator <(const Rezultat& drugi) const {

if (direktorijum != drugi.direktorijum)

return direktorijum < drugi.direktorijum;

return zadatak < drugi.zadatak;

}

};

void ucitajRezultate(ifstream& ulaz , vector <Rezultat >& lista) {

12

string linija;

while (getline(ulaz , linija)) {

stringstream ss(linija);

Rezultat r;

ss >> r.direktorijum >> r.zadatak >> r.eliminacioni >> r.testovi;

lista.push_back(r);

}

}

void ispisiFormatiraneRezultate(ofstream& izlaz , vector <Rezultat >& lista) {

sort(lista.begin(), lista.end ());

for (int i = 0; i < lista.size (); i += 5) {

izlaz << lista[i]. direktorijum << "␣";

for (int j = 0; j < 5; ++j) {

int poeni = lista[i + j]. eliminacioni ? lista[i + j]. testovi : 0;

izlaz << poeni << "␣";

}

izlaz << endl;

}

}

int main() {

const string ulaznaDatoteka = "rezultati.csv";

const string izlaznaDatoteka = "formatirano.csv";

ifstream ulaz(ulaznaDatoteka);

if (!ulaz.is_open ()) {

cout << "-1" << endl;

return 0;

}

ofstream izlaz(izlaznaDatoteka);

vector <Rezultat > lista;

ucitajRezultate(ulaz , lista);

ispisiFormatiraneRezultate(izlaz , lista);

return 0;

}

13

Задатак: Кандидати за стипендиjе

Написати програм коjи помаже радницима студентске службе да идентификуjу
студенте коjи испуњаваjу услове за добитак стипендиjе. Студент стиче право да се
приjави за стипендиjу ако:

• се налази на другоj, трећоj, четвртоj или петоj години студиjа

• има просек преко 9.0 и

• има ефикасност од 60 еспб годишње

Опис улаза

Са стандардног улаза уносе се редом: име датотеке коjа садржи податке о студентима,
име датотеке у коjу jе потребно уписати резултате претраге и година студиjа по коjоj
се врши претрага. Улазна датотека садржи редове у следећем формату:

godinaStudija ime prezime prosek efikasnost

Опис излаза

Излазна датотека треба да садржи сортирану листу студената са тражене године
студиjа коjи испуњаваjу услове за добитак стипендиjе, и то информациjе о имену,
презимену и просеку. Студенти су у листи сортирани наjпре по просеку нерастуће,
а затим по презимену и имену неопадаjуће. У случаjу грешке током извршавања
програма исписати поруку о грешци коjа се догодила и прекинути програм.

Пример

Улаз

studenti.txt
trecaGodina.txt
3

Садржаj датотеке studenti.txt

2 Pera Peric 8.5 60
3 Mika Mikic 9.67 60
4 Laza Lazic 6.34 34.5
5 Zika Zikic 9.07 60
5 Petar Petrovic 8.76 60
7 Marija Jankovic 10.0 60
3 Ana Anic 9.43 60

14

2 Milica Ilic 7.34 42.5
4 Pavle Pavlovic 7.86 54
6 Jova Jovic 9.80 40
3 Aca Acic 9.67 60
4 Jovan Jovanovic 10.0 60

Излаз, садржаj датотеке trecaGodina.txt

Aca Acic 9.67
Mika Mikic 9.67
Ana Anic 9.43

Решење

Оваj проблем може се ефикасно решити jедним проласком кроз листу студената
у улазноj датотеци. Учитавамо информациjе о студентима, линиjу по линиjу и, када
наиђемо на студента коjи се налази на траженоj години студиjа, проверимо да ли
испуњава услове за стицање стипендиjе. Уколико су сви услови испуњени, информациjе
о тренутном студенту се могу додати у низ. Након проласка кроз датотеку, низ
ће садржати информациjе о свим студентима коjи испуњаваjу услове за добитак
стипендиjе. Након тога, потребно jе сортирати низ. Резултате уређене на оваj начин
можемо jедноставно преписати у излазну датотеку.

Приликом обраде грешака можемо користити EXIT_FAILURE. To jе макро дефинисан
у заглављу <cstdlib> и представља код за неуспешан завршетак програма. Користи
се да оперативном систему сигнализира да jе програм прекинут због грешке (нпр.
погрешан улаз, неуспешно отварање датотеке и сл.).

#include <iostream >

#include <vector >

#include <fstream >

#include <string >

#include <sstream >

#include <algorithm >

#include <cstdlib >

using namespace std;

struct Student {

string prezime;

string ime;

int godinaStudija;

double prosek;

double efikasnost;

};

15

void greska(string poruka){

cout << poruka << endl;

exit(EXIT_FAILURE);

}

void obradiFajl(ifstream& studenti , const int& trazenaGodina ,

vector <Student >& rezultat){

string linija;

Student s;

while(getline(studenti , linija)){

stringstream student(linija);

int godina;

student >> godina;

if(godina != trazenaGodina)

continue;

else{

s.godinaStudija = trazenaGodina;

student >> s.ime >> s.prezime >> s.prosek >>

s.efikasnost;

if(s.prosek >= 9.0 && s.efikasnost == 60)

rezultat.push_back(s);

}

}

}

void ispisiRezultate(ofstream& stipendisti , vector <Student >&

rezultat){

sort(begin(rezultat), end(rezultat),

[](const Student &student1 , const Student &student2){

if(student1.prosek == student2.prosek)

if(student1.prezime == student2.prezime)

return student1.ime < student2.ime;

else

return student1.prezime < student2.prezime;

return student1.prosek > student2.prosek;

});

for(Student s : rezultat)

16

stipendisti << s.ime << "␣" << s.prezime << "␣" <<

s.prosek << "\n";

}

int main(){

string ulazniFajl , izlazniFajl;

cin >> ulazniFajl >> izlazniFajl;

int trazenaGodina;

cin >> trazenaGodina;

if(trazenaGodina < 2 || trazenaGodina > 5){

greska("Greska!␣Niste␣uneli␣validnu␣vrednost␣za␣godinu!");

}

vector <Student > rezultat;

ifstream studenti(ulazniFajl);

ofstream stipendisti(izlazniFajl);

if(! studenti.is_open ()){

greska("Greska!␣Datoteka␣nije␣otvorena!");

}

obradiFajl(studenti , trazenaGodina , rezultat);

ispisiRezultate(stipendisti , rezultat);

return 0;

}

}

Задатак: Приjава испита

У току jе приjава испита за jануарски испитни рок. Познат jе списак студената
коjи су већ приjавили да ће изаћи на испит из Увода у програмиње. Потребно jе
написати програм коjи ће за нове испитне приjаве на списак додати оне студенте
коjи нису већ приjавили испит.

17

Опис улаза

Са стандардног улаза се учитава назив фаjла у коме се налази списак приjављених
студената, а затим у сваком реду по jедна испитна приjава до краjа улаза. Свака
испитна приjава садржи презиме, име и броj индекса студента раздвоjене размаком.

Опис излаза

На краj фаjла коjи садржи списак приjављених студената дописати оне студенте
коjи нису већ приjавили испит.

Пример

Улаз, садржаj датотеке prijava.txt

Stankovic Ivana 9/2025
Petrovic Ana 13/2025
Ilic Stefan 12/2025
Tomic Milica 17/2025

Стандардни улаз

prijava.txt
Jovanovic Marko 7/2025
Petrovic Ana 13/2025
Zoric Milica 4/2025

Излаз, садржаj датотеке prijava.txt

Stankovic Ivana 9/2025
Petrovic Ana 13/2025
Ilic Stefan 12/2025
Tomic Milica 17/2025
Jovanovic Marko 7/2025
Zoric Milica 4/2025

Решење

Оваj задатак можемо решити тако што за сваког унетог студента наjпре проверимо
проласком кроз фаjл да ли већ постоjи на списку. Уколико jе одговор одричан,
уписуjемо га на краj фаjла. Како не бисмо обрисали садржаj фаjла пре уписивања,
потребно jе да га отворимо у моду за надовезивање (ios::app). Пошто су студенти
представљени помоћу структуре Student, потребно jе дефинисати унутар ње оператор
==, како би било могуће вршити проверу да ли су студенти jеднаки.

18

#include <iostream >

#include <fstream >

#include <sstream >

using namespace std;

struct Student {

string prezime;

string ime;

int brojIndeksa;

int godinaUpisa;

bool operator ==(const Student& other){

return prezime == other.prezime &&

ime == other.ime &&

brojIndeksa == other.brojIndeksa &&

godinaUpisa == other.godinaUpisa;

}

};

int main(){

string ime_fajla;

cin >> ime_fajla;

cin.ignore ();

ofstream dopisivanje(ime_fajla , ios::app);

Student s;

string linija;

while(getline(cin , linija)){

char crtica;

stringstream student(linija);

student >> s.prezime >> s.ime >> s.brojIndeksa >>

crtica >> s.godinaUpisa;

ifstream spisak(ime_fajla);

if(! spisak.is_open ()){

cout << -1 << endl;

19

return 0;

}

bool nadjen = false;

while(getline(spisak , linija)){

Student s1;

stringstream student1(linija);

student1 >> s1.prezime >> s1.ime >>

s1.brojIndeksa >> crtica >>

s1.godinaUpisa;

if(s == s1){

nadjen = true;

break;

}

}

if(! nadjen)

dopisivanje << s.prezime << "␣" << s.ime

<< "␣" << s.brojIndeksa << "/" <<

s.godinaUpisa << endl;

}

return 0;

}

20

